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Abstract
Acidification in nearshore waters is influenced by a multitude of drivers that shape the dynamics of pH and

carbonate chemistry variability on diurnal, seasonal, and yearly time scales. Monitoring efforts aimed at charac-
terizing high temporal variability are lacking in many nearshore systems, particularly in high-latitude regions
such as Alaska. To rectify this, a nearshore acidification sensor array was established in the Fall of 2017 within
Kachemak Bay, Alaska. Presented here are the results from the first year of these deployments, and the first
record of a year-long high-frequency pH time series for nearshore Alaska. SeaFET™ pH and O2 sensors deployed
in Jakolof Bay and Bear Cove reveal a seasonally dynamic system in which nearshore waters in these two
enclosed bays transition to being predominantly net autotrophic systems for a period of 60-plus days. High rates
and durations of primary production in late spring and early summer create high pH conditions and extreme
variability. Observed pH values in Jakolof Bay and Bear Cove tracked hourly rates of change on the order of 0.18
and 0.10 units, respectively. In Jakolof Bay nondirectional variability within a 12-h period was > 1 pH unit,
exposing organisms to unstable, nonstatic pH conditions on tidal and diurnal cycles. Consistent frequency pat-
terns detailing the magnitude of pH variability was correlated to tidal and O2 signatures, elucidating the dynam-
ics and drivers of pH variability. This first year of observations is the first step in quantifying the anthropogenic
contribution to acidification for Kachemak Bay in the forthcoming years.

The global phenomenon of ocean acidification has resulted
in a reduction in the ocean’s buffering capacity as the hydro-
lysis of absorbed atmospheric CO2 increases dissolved inor-
ganic carbon, lowering carbonate ion concentration and
seawater pH. In response to this ocean change, interconnected
regional networks have been established to monitor and
report the chemical changes occurring within the carbonate
system (Mathis and Feely 2013; Newton et al. 2015). The pur-
pose of this global ocean acidification network (http://goa-on.
org) is to observe how acidification affects ecosystems from
the tropics to the arctic within the context of marine resource
viability. Specific to the United States, Alaskan aquaculture
and fisheries are highly vulnerable to the effects of acidifica-
tion due to a higher degree of social and economic reliance on
marine resources (Ekstrom et al. 2015; Mathis et al. 2015a).

A recent meta-analysis has shown that marine species in
Alaska’s polar regions are particularly sensitive to acidification
(Kelley and Lunden 2017). And from a geochemical perspec-
tive, Alaskan coastal waters are more susceptible to acidifica-
tion due to the intrinsic ability of these cold, high-latitude
waters, to hold more TCO2 due to enhanced CO2 solubility
and the equilibrium effects of colder water on carbonate
chemistry thermodynamics (Fabry et al. 2009). In addition,
nearshore Alaskan habitats are highly productive in the boreal
spring and summer. The resulting organic carbon
remineralization from the demise of this new production and
increased freshwater input markedly increases TCO2 leading
to seasonal acidification events (Fabry et al. 2009; Mathis
et al. 2015b; Siedlecki et al. 2017). Tracking acidification
events and temporal trends in Alaskan coastal waters has
taken a multifaceted approach: moored PCO2 sensors and
ship-based bottle sampling of TCO2 and total alkalinity (TA)
in deep waters (Gulf of Alaska and Bering sea), shore-based
continuous PCO2 sampling by Burke-o-Lators (Hales
et al. 2004; Bandstra et al. 2006) on southeast and central
coasts, nearshore pH monitoring with autonomous sensors
within Cook Inlet’s Kachemak Bay (this study), and Saildrones
in Southcentral Prince William Sound (Dugan et al. 2017).
While this effort has seen robust traction in the past few years,
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high spatial and temporal resolution measurements are still
lagging in areas such as Kachemak Bay, where tidal prisms are
extreme and biodiversity rich.

Kachemak Bay is located in the northern part of the Gulf of
Alaska within Cook Inlet and has one of the largest tidal ranges
in the world at � 8 m. The major freshwater inputs into the
bay include the Fox River delta at the head, and seven glacial
streams that are predominantly in the head-ward, northern
part of the bay (Alaska Department of Fish and Game 1998;
Schoch and Chenelot 2004). Tidal flushing along with riverine
and glacial meltwater flux into the bay are physical processes
that contribute to acidification variability (Evans et al. 2014;
Waldbusser and Salisbury 2014; Beckwith et al. 2019). Homer
Spit spatially separates the bay into inner and outer basins. The
inner basin receives the bulk of glacial silt and freshwater dis-
charge as well as riverine freshwater, and the outer basin is
more oceanic influenced aside from a few glacial streams along
the southeastern shore (Alaska Department of Fish and
Game 1998; Schoch and Chenelot 2004). Surface waters in the
outer basin can be affected by CO2 rich, upwelled water, from
the Gulf of Alaska entering through Cook Inlet, while the inner
basin is a partially mixed estuary where precipitation and fresh-
water runoff exceed evaporation (Trasky et al. 1977; Alaska
Department of Fish and Game 1998).

The complex geomorphology and oceanography of this
region make Kachemak Bay one of the most biodiverse and
biologically productive bays in subarctic waters (Alaska
Department of Fish and Game 2001). Protected coves provide
habitat for annual dense macroalgae kelp forests and seagrass
meadows, which form biodiverse biogenic habitats (Schoch
and Chenelot 2004; Alaska Department of Fish and Game
2015). Allochthonous nutrients are transported into the bay

from oceanic sources and terrestrial runoff which spike robust
seasonal primary productivity in spring and summer, and sub-
sequent die-offs in the early boreal fall. The disparity of this
nutrient input, however, runs along the bay from north to
south and is affected by the inner and outer basin gyres sepa-
rated by Homer Spit (Trasky et al. 1977). Thus, heterogeneity
in primary productivity and ecosystem metabolism is sepa-
rated in space (i.e., lengthwise along Kachemak Bay). The
resultant biological metabolism along the bay fuels diurnal
and seasonal O2 and CO2 variability, which play an integral
part in coastal acidification (Baumann and Smith 2018; Feely
et al. 2018; Pacella et al. 2018).

As a first-order chemical oceanographic characterization of
the bay, this study details the first year of a multi-year study
investigating high spatial and temporal variability of pH within
enclosed bays along Kachemak Bay’s inner and outer regions.
The objectives were to catalogue the collected measurements
into the Alaska Ocean Observing System (AOOS) database and
elucidate the patterns and frequency of pH variability and poten-
tial drivers of these changes. We present data analysis of pH, O2,
temperature, and salinity in the time and frequency domains
and detail an approach to determine accuracy and uncertainty
when operating an deploying Sea-Bird Scientific’s SeaFET™.

Methods
Study site and sensor deployment

Kachemak Bay is situated in the southeastern corner of
Cook Inlet, Alaska. Two nearshore field sites—Jakolof Bay
(59.466 N 151.534 W) and Bear Cove (59.726 N 151.056 W)—
were selected for sensor package deployment (Fig. 1). These
sites were chosen because they span the length of Kachemak

Fig 1. Geographical location of Kachemak Bay, Alaska, U.S.A., with sensor deployment sites in the outer and inner basin of Kachemak Bay. Jakolof Bay
located toward the mouth (red circle) and Bear Cove (orange circle) at the head of the bay.
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Bay, from the southern corner (outer basin) to the upper
reaches of the bay (inner basin), bisecting the bay in a long-
shore axis. A sensor array outfitted with a Sea-Bird SeaFET™
pH sensor equipped with a copper cap placed over the elec-
trodes (to prevent biofouling) and tributyltin plug was secured
alongside a PME miniDOT optical oxygen logger and deployed
at each site on 7–8 October 2017. Onset HOBO conductivity
loggers were added to the sensor array on 19–20 December
2017. Jakolof Bay is located on the southern coast of
Kachemak Bay and is notable for the diversity of invertebrate
fauna (Lees et al. 1980). Bear Cove sits on the southeastern
shore of Kachemak Bay, near the head of the bay. At Jakolof
Bay, the sensor array was attached to a mooring frame, secured
to a pier piling and placed roughly 1 m from the bottom in
the shallow subtidal zone with up to 10 m of overlying water,
depending on the tide. The Bear Cove sensor array was fas-
tened to an anchor rope attached to a surface mooring that
descended to a mid-water depth of 9 m in 23 m of water. This
sensor array would shift closer to the bottom as the tide
ebbed. Each site is located less than 100 m from the shoreline,
and the distance between the two sites is 39.5 km. SeaFET™s
were automated to sample every 3 h, with an average of
10 samples per frame (a single measurement averaged over
10 reads) and 30 frames per burst. Sampling measurements are
reported here until 8 October 2018 with all timestamps
reported in Coordinated Universal Time (UTC). Temperature
measurements for each site were collected using the SeaFET™’s
onboard thermistor.

Sensor calibration: Reference samples and measurements
SeaFET™ calibration and reference samples were collected

from a single grab by diver’s hand Niskin where sampling was
proximate to each sensor array � 20 cm from the electrodes
throughout the deployment period. The grab sample occurred
within 30 s of the instrument sampling time period. Duplicate
discrete bottle samples were filled from the single Niskin grab
and measured as analytic replicates. In addition, sensor data
was downloaded to check for anomalies, and a maintenance
inspection was performed at every occurrence discrete samples
were taken as part of a best practices protocol.

For Jakolof Bay, discrete seawater samples were collected on
20 December 2017, 00:00, 16 March 2018, 21:00, 10 June
2018, 00:00, and 14 August 2018, 18:00. The water sample
collected on 20 Dec 2017 was used to calibrate sensor pH
values, and the successive discrete samples were used as refer-
ences to examine sensor uncertainty. Similarly, Bear Cove dis-
crete water samples were collected on 19 Dec 2017, 21:00,
16 March 2017, 18:00, 7 June 2018, 21:00, and 13 August
2018, 18:00. The 16 March 2018 seawater sample was used to
calibrate sensor pH values, and the following discrete samples
were used to quantify pH uncertainty for this sensor. Samples
were stored in 250 mL borosilicate bottles, fixed immediately
with 200 μL saturated mercuric chloride, and were held in a
refrigerator at � 4�C until laboratory analysis. The pHT (total

scale) of each sample was measured at 25�C on a Shimadzu
1800 spectrophotometer (spectrophotometric method, SOP
6b, Dickson et al. 2007; using meta-cresol purple from Acros,
batch # 30AXM-QN). A dye impurity correction factor
(Douglas and Byrne 2017) was applied to the final calculation
of pHT. TA was measured via open-cell titration (AT, SOP 3b,
Dickson et al. 2007) using the Metrohm 848 Titrino plus. A
YSI 3100 Conductivity instrument and handheld digital ther-
mometer (Omega, HH81A) were used to measure salinity and
temperature at the time of collection. pHT in situ was calcu-
lated using CO2SYS (van Heuven et al. 2011) and the con-
stants from Lueker et al. (2000), Uppström (1974), and
Dickson et al. (1990) with the input parameters spectrophoto-
metric pHT (25�C) and TA (Table S1). Voltage measurements
recorded by the SeaFET™ sensor were converted to pHT as in
Martz et al. (2010) using the single-point calibration method
(Bresnahan et al. 2014; Miller et al. 2018) and Mathworks
Matlab software (V. 2017a). This was done by using the mea-
sured pHT from the discrete bottle samples and calculating the
electrode specific single-point calibration coefficients, which
were then used to derive each pH dataset. All pHT reported
values are from the internal SeaFET™ electrode given the accu-
racy, stability, and low inter-sensor variability associated with
this electrode (Bresnahan et al. 2014; Gonski et al. 2018;
Miller et al. 2018).

The HOBO-derived salinity data were calibrated using dis-
crete bottle samples collected from each site and measured
with a YSI 3100 conductivity meter. The subsequent data was
postprocessed via HOBOware® Pro software using the labora-
tory measured discrete bottle samples that served as
predeployment and postdeployment endmembers for each
individual salinity dataset as per the manufacturer’s
recommendation.

Uncertainty and carbon chemistry estimates
The accuracy and uncertainty of the SeaFET™ sensor is

dependent on intrinsic properties and user operation (see
Miller et al. 2018 and references therein). In order to account
for these potential sources of uncertainty, we calculated a
propagated uncertainty and then applied this to the entire
time series. Discrete bottle samples collected for calibration
and reference points were scrutinized for overall accuracy
based on uncertainty propagation. The individual sources of
uncertainty are from spectrophotometric m-cresol dye, bottle
replicates, titrator performance, and CO2SYS calculations.
Uncertainty of spectrophotometric measurements with m-
cresol were examined via triplicate analytical replicates using
Certified Reference Material (CRM: Batch 172, A.G., Dickson,
Scripps Institute of Oceanography). The mean value from the
triplicate runs was integrated into a propagated uncertainty as
m-cresol uncertainty. The standard deviation of measured pHT

from each discrete bottle sample served as bottle replicate
uncertainty. Duplicate titrations were performed on each cali-
bration and reference sample to address titrator uncertainty.
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The TA standard deviation for each sample was then added to
the difference between measured CRM and known CRM to
calculate a titrator uncertainty as it affected pHT. The final
uncertainty term came from the calculation of in situ pHT

using TA and spectrophotometric pHT at 25�C as input param-
eters to CO2SYS. This was calculated using the errors script
(calculated using Matlab v2017a) linked with CO2SYS which
outputs the error associated with deriving specific carbonate
chemistry parameters based on the measured input parameters
(Orr et al. 2018). The output uncertainty was given as H+ con-
centration and recalculated as pHT uncertainty. The following
uncertainty propagation was summed in quadrature as:

Q =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2m−cresol + σ

2
Bottle replicates + σ

2
titrator + σ

2
CO2SYS constants

q
ð1Þ

where Q is the propagated uncertainty, and σ is the standard devi-

ation from all analytical calculations. This process was repeated

each time discrete samples were taken. This uncertainty propaga-

tion of the measurement was then concatenated with the anomalies

between discrete reference bottle pHT and sensor pHT. This was

done by taking the mean of all uncertainty values and applying it

as a total uncertainty across the entire time series (Table S2).

Estimates of TA values were determined for all time points
where salinity data was available using the mean linear TA-
salinity regression for the Gulf of Alaska (Evans et al. 2015;
Siedlecki et al. 2017). TA estimates were then used alongside
measured pHT to constrain the carbonate system and estimate
PCO2 and aragonite saturation state (Ωarg) using CO2SYS: con-
stants Lueker et al. (2000), Uppström (1974), and Dickson
et al. (1990). Uncertainty for these estimates was constructed
by calculating PCO2 and Ωarg with CO2SYS using the mini-
mum and maximum TA values at each site, this provided
uncertainty end member values. The reported RMSE of
17.22 μmol kg−1 for the TA-salinity regression (Evans
et al. 2015) was then subtracted from the maximum and mini-
mum TA values to recalculate PCO2 and Ωarg. The difference
between the original estimates and the recalculated PCO2 and
Ωarg values was applied as a TA estimated uncertainty. The
total uncertainty for the pHT time series was then converted
as a percent, and that proportion was then concatenated with
the TA estimated uncertainty. This was done to account for
the different units. A final uncertainty term was determined
using the errors script (Matlab v2017a) associated with
CO2SYS (Orr et al. 2018) for determining PCO2 and Ωarg from
pHT and TA.

pH time series and frequency analysis
To determine trends with seasonal changes and diurnal var-

iability for the year-long deployment, pHT was analyzed in the
time domain to understand general patterns, while analysis in
the frequency domain elucidated consistent frequencies in the
magnitude of pH variability. Jakolof Bay time series data were
corroborated against three discrete reference samples taken

subsequent to the December calibration sample, whereas Bear
Cove time series had two reference samples subsequent to the
March 2018 calibration. pHT time series was determined for
both Jakolof Bay and Bear Cove sites across the entire deploy-
ment period, with monthly averages and a 30-day running
average reported to depict monthly and seasonal trends in
pHT variability. The timing of pHT variability is constrained by
month in high-latitude regions due to sudden temperature
changes and daylength, therefore, a power spectral density
analysis for each month was performed on each pHT time
series using the pwelch function in Matlab (v2017a) with a
sampling rate of 9.26 × 10−5 samples s−1: equivalent to 8 sam-
ples d−1 (i.e., every 3 h). A Hanning window was applied to
the pwelch function, and the mean pHT value of each month
was subtracted from the dataset in order to examine only the
variance around the mean. A 3rd order Butterworth high-pass
filter was designed and applied to the spectral analyses to
remove any residual noise around a frequency of 0, which is
an artifact of the transformation. The butter function in
Matlab (v2017a) was set with a cut-off frequency of
1.00 × 10−5. A power spectral density analysis breaks down
the frequency components of the time series to reveal its
underlying periodicity. The analysis displays what frequencies
(i.e., the number of times per day a signal changes) have the
greatest magnitude of variance. Months May through
September coincide with subarctic primary production, and
were the most variable with respect to pHT (Welschmeyer
et al. 1993; Strom et al. 2006). These months were analyzed at
12 h periods for nondirectional, cumulative, pHT variability.
The absolute difference in pHT between 3 h increments over a
12 h period was calculated and summed. Time points from
00:00 to 12:00 and 12:00 to 00:00 were reported as half-day
measurements of total pHT variation for Jakolof Bay and Bear
Cove sites.

Ancillary data analysis
Ancillary data such as temperature, salinity, and O2 con-

centration were examined as drivers of pHT variability and
were analyzed in the time domain for both Jakolof Bay and
Bear Cove datasets displaying associated pHT values. The tem-
perature from the internal SeaFET™ thermistor is reported in
all analyses. Thermistor temperature was cross-validated with
a handheld digital thermometer (Omega, HH81A) while the
Jakolof Bay SeaFET™ was fully submerged in a sea-table at
Kasitsna Bay laboratory. No offset was applied as this discrep-
ancy in temperature (0.2–0.5�C) would affect pHT to a degree
lower than the precision of the instrument. Oxygen concen-
tration and tidal amplitude were also correlated to the magni-
tude of pHT variability for months May–September in the
frequency domain via spectral analysis at both Jakolof Bay
and Bear Cove sites. The same methods as above were used for
these frequency transformations.

Residence time and water circulation can have an effect on
pHT variability and was included in ancillary data analyses.
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Predicted tidal data was accessed from the National Oceanic
and Atmospheric Administration (NOAA): tides and currents
(https://tidesandcurrents.noaa.gov) for Kasitsna Bay and Bear
Cove. Kasitsna Bay predictions were applied to the Jakolof Bay
site as this was the closest prediction for this location. Tidal
amplitude was calculated as the absolute difference from the
mean lower low water and was examined as a predictor for
pHT variability. Tidal amplitude was collapsed because only
the magnitude of deviation associated with pH variability was
relevant to this study. Distinguishing specific patterns related
to ebb and flood tides was outside the scope of this study as
was the type of data needed for these analyses.

The net autotrophy and heterotrophy of the system were
examined as correlatives of pHT variability and were deter-
mined by comparing measured O2 values against O2 satura-
tion. Oxygen saturation at atmospheric pressure was derived
following the methods of Garcia and Gordon (1992) using
measured temperature and salinity values. Apparent oxygen
production was calculated as the difference between measured
in situ concentration and saturation as a function of tempera-
ture and salinity. For periods where salinity was missing at
Bear Cove, an estimated apparent oxygen production was
determined from the average salinity taken over the entire
time series where data points were present (19 December
2017–2018 May 2018). This method was deemed appropriate
as salinity values from the Kachemak Bay National Estuarine
Research Reserve reported salinity variability of � 2 units for
all of 2017, and � 4 units (aside from a few anomalous
spikes that appeared for only 15–30 min) for 2018 at the
deep-water Homer Spit station (http://cdmo.baruch.sc.edu/
dges/).

Statistical approach
Pearson’s correlation coefficients were calculated between

pHT and factors temperature, tidal amplitude, and O2 concen-
tration for months May–September at Jakolof Bay and Bear
Cove. Relationships were examined by month at every 3 h
time point totaling 240 measurement points for a month with
30 d. The exact number of points varied based on day length
per month and missing data points within a month.

The magnitude-squared coherence in the frequency
domain was calculated between pHT and factors tidal ampli-
tude and O2 concentration for months May–September at,
both, Jakolof Bay and Bear Cove sites. The magnitude-squared
coherence describes the power coherence between an input
and output variable at a given frequency. Assuming a linear
relationship of power variation exists between pHT and tide
amplitude and O2 concentration, the magnitude-squared
coherence assigns a correlation between pHT and its driving
factor at a specific frequency. Welch’s approach (Welch 1967)
of overlap segment averaging was applied with a 100-point
Hanning window for determination of the magnitude-
squared coherence. Prior to this analysis, cross-correlation
between pHT and each factor (i.e., tidal amplitude or O2) was

inspected to determine any potential lag time that could con-
found the correlation estimate. Because the resolution was
every 3 h, the average of three time points (� 45 min time-
point−1) around (± 1 time point), including the peak of the
power spectral density, was used to determine the
magnitude-squared coherence between O2 concentration and
tidal amplitude to pHT.

Results
Apparatus performance

The sensor array at each site performed optimally with
only a few mishaps in operation and data collection. The
standard deviation between duplicate discrete bottle samples
taken at Bear Cove on 19 December 2017 was > 0.05 pH units
and, therefore, discarded as a nonrobust calibration or refer-
ence point (see Miller et al. 2018 for discussion on this thresh-
old). This resulted in Bear Cove calibration with the 18 March
2018 sample, and one less discrete sample relative to Jakolof
Bay. The conductivity logger attached to the sensor apparatus
at Bear Cove malfunctioned in May with data logging failing
after 18 May 2018. The sensor was not repaired or replaced,
thus salinity data at Bear Cove was only collected from
December 2017 to May 2018. During the June discrete sam-
pling and maintenance inspection, sediment build was found
in the copper cap of the Jakolof Bay SeaFET™ and the instru-
ment was pulled for cleaning. This resulted in missing data
points from 30 May 2018 to 10 June 2018. The sensor was
redeployed on 11 June 2018, 00:00 after cleaning and proper
operation verified. Prior to redeployment, the Jakolof Bay
SeaFET™ was fully submerged in a sea table at Kasitsna Bay
laboratory to test functionality for several days; thus, the dis-
crete reference sample taken on 10 June 2018, 18:00 occurred
in the wet lab rather than in the field. Given that the anom-
aly between this reference sample was greater than the in situ
March reference, there is no indication that this sample was
biased. A barnacle was found growing on the PME miniDOT
at the Bear Cove site and was removed on June 2018. Any
potential discrepancies in O2 measurements during this time
appear to be trivial as recognition of the exact time when bar-
nacle attachment occurred could not be isolated relative to
the background variability. Anomalous O2 data showing
erratic swings > 9 mg L−1 within a 3 h period at Bear Cove
was observed at the beginning of September and was dis-
carded for the rest of the time series. This was believed to be
sensor malfunction as no other sensor showed irregularity at
this time.

SeaFET™ accuracy and uncertainty
The discrete bottle samples used as reference points to ver-

ify SeaFET™ operation and accuracy were in fair agreement
with SeaFET™ pHT as anomalies were < 0.035 for Jakolof Bay
and < 0.05 for Bear Cove (Table S2). The individual constitu-
ents of the propagated uncertainty values associated with the
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measurement of the discrete bottle samples contributed mini-
mally to overall pHT uncertainty. Sources of uncertainty “bot-
tle replicates” and “CO2SYS constant errors” accounted for the
largest proportion of the total uncertainty value (Fig. S1,
Table S2). The anomaly between the bottle samples and the
SeaFET™ increased over time; however, the anomaly between
the internal and external electrode remained consistent from
June to August (� 0.04 units) for both sensors and lacked any
signs of biofouling build-up providing no clear explanation
for the anomaly increase. The external electrode did not devi-
ate from the internal electrode trend corroborating proper
functionality of the sensors. The March reference sample for
Jakolof Bay yielded the greatest propagated uncertainty, which
was an order of magnitude higher than all other discrete sam-
ples. The total uncertainty applied to the entire Jakolof Bay
times series was 0.0182, whereas Bear Cove total uncertainty
was higher at 0.0210 (Table S2). This higher value for Bear
Cove was due to the large anomaly between the SeaFET™ pHT

and the reference bottle sample taken during the August
sampling period.

pH time and frequency variation
Each time series displayed distinct times of maximum and

minimum pHT values with extreme variability in September at
Jakolof Bay and in June at Bear Cove. Jakolof Bay pHT had lit-
tle variation in fall 2017 through winter 2018 with a steady
increase beginning in February and peaking around June: eas-
ily observable from the 30-day running average (Fig. 2a). Bear
Cove pHT had a range of 0.13 units from the beginning of the
deployment until April, when a sharp rise in baseline pHT and
variability increased exponentially (Fig. 3a). The highest pHT

values here were observed at the very end of April and begin-
ning of May, reaching a maximum of 8.37, which was
0.05 units greater than the maximum at Jakolof Bay in mid-
June. A precipitous pHT decline at Bear Cove began in late
June and did not abate until October. The most significant
decline in the 30-day running average was at a rate of 6%
where pHT dropped by 0.11 units in 19 d during the month of
September (Fig. 3a). At Jakolof Bay, pHT variability was greatest
in September and during the first neap tidal cycle of that
month (Figs. 2b, 4a). This was different at Bear Cove where
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the transition from neap to spring tide coincided with greatest
variability in pHT at the end of May (Figs. 3b, 5a).

The variance around the monthly averages at both Jakolof
Bay and Bear Cove differ in time and show distinct trends in sea-
sonal variability and the frequency of diurnal variability. At
Jakolof Bay the standard deviation of monthly pHT means begin
to increase in April and remain high through September
(Fig. 4a). Bear Cove on the other hand only showed high vari-
ability for April, May, and June, where the variance was ≥ 2x the
remaining months of the time series (Fig. 5a). Variability at both
sites, however, increased with daylength. The magnitude of diur-
nal pHT variability shown as power spectral density displayed
notable peaks only during the months when pHT was highly var-
iable. Frequencies corresponding to 1, 2, and � 4 d−1 coincided
with the strongest power spectral density values (Figs. 4b,c, 5b,c).
September had the most robust power spectral density values at
Jakolof Bay, and was the month with the greatest pHT variation.
Frequency peaks here were present at 0.6 (equivalent to a fre-
quency signal once every 1.5 d) and � 3 in addition to 1, 2, and
� 4 d−1 (Fig. 4b,c). Expectedly, the power spectral density peaks
at Bear Cove where greatest during the month of May, which is

congruent with high pHT variance observed during this period
(Fig. 5b,c). May and June shared similar frequency responses in
pHT variation with power spectral density peaks occurring
approximately, 1, 2 and 0.5 d−1 (equivalent to once every 2.3 d).
All other months did not display a power spectral density greater
than 10 dB Hz−1 across all frequencies.

The summed absolute differences between each sequential 3 h
pHT measurement within a 12 h period displayed rapid shifts in
pHT at both sites. Over a 12 h period at Jakolof Bay, the total varia-
tion (i.e., summed positive and negative shifts) in pHT was greatest
for months August and September (Fig. 6a). On the fourth day of
September, the total variation in pHT over a 12 h period was > 1
full unit. June had the lowest variation in a 12 h period despite
having a greater overall variance than the month of July (Fig. 6a).
At Bear Cove, May and June had a similar magnitude in total pHT

variation over a 12 h period, however, the timing shifted through-
out the month (Fig. 6b). In the first half of June the total variation
in pHT over a 12 h period reached a maximum of 0.5 pHT units,
whereas the second half of May had greater changes in pHT

reaching 0.54 units. The greatest magnitude of variation in May
sustained for � 36 h from the 27th to 29th (Fig. 6b).
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Trends in temperature, salinity, and oxygen
Temperature at Jakolof Bay followed a predictable sea-

sonal trend with a dynamic range of 10�C reaching a low of
2.2�C in March and a high of 12.2�C in August (Fig. 7a).
pHT generally followed the temperature trend starting in
January with lower values occurring in colder waters and
higher pHT in the warmer summer months. Deviations from
this general trend occurred in early August and early September
where pHT appeared to deviate strongly from temperature
resulting in low pHT values relative to temperature (Fig. 7a).
Temperature at Bear Cove was similar to Jakolof Bay ranging
from 2�C to 12�C but with greater diurnal variability through-
out the month of June (Fig. 8a). pHT displayed very little vari-
ability from October 2017 to March 2018 despite a 10�C
change in temperature during this period: the trend was similar
to Jakolof Bay.

Salinity at Jakolof Bay fluctuated minimally from December
2017 through mid-July 2018 (Fig. 7b). Beginning on 22 July
2018, a repeated cyclical pattern of low salinity, � 25
occurred, every 24–27 h for about a week. On the 28th and
29th of July there were sustained lows averaging a salinity of
25. These somewhat stochastic events of low salinity appeared

to have little or no effect on pHT (Fig. 7b). The low salinity
events coincided with an oncoming spring tide which likely
transported a surface layer freshet that mixed with deeper
water to drive the decline. With few exceptions, salinity at
Bear Cove remained between 29 and 31 from August to
October 2018 (Fig. 8b). Salinity increased � 2.5 units from
December 2017 to April 2018 followed by stochastic variation
ranging � 2 units until sensor failure in mid-May. pHT

appeared to be invariant relative to salinity at this time and
remained at � 8.2 during the majority of the observed lower
salinity values (Fig. 8b).

O2 concentration slowly increased from the beginning of the
deployment reaching a maximum of � 13.0 mg L−1 in June at
Jakolof Bay (Fig. 7c). This gradual increase was interrupted by a
drop in O2 concentration beginning in mid-May where extreme
stochasticity persisted for � 60 h until the second week of June
(Fig. 7c). During June and July when oxygen concentrations
where highest, diurnal variation was no greater than 1.5 mg L−1

and began a slow downward trend over these 2 months. pHT

appeared less sensitive to O2 concentration during various points
in June where pHT differences of < 0.03 units corresponded to O2

concentrations that varied � 3 mg L−1. This decrease in pHT
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Fig 5. Monthly mean pHT of Bear Cove time series from October 2017 to September 2018 on the left y-axis with daylength on the right y-axis (a). Error
bars are standard deviation. Power spectral density analysis of Bear Cove by month: April–June (b), and July and September (c). These months were the
only ones with robust power spectral density magnitudes that exceed 20 dB Hz−1. Months below this threshold are not shown.
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sensitivity appeared more prevalent during times of high O2 con-
centration (Fig. 7c). O2 concentration at Bear Cove was represen-
tative of primary production beginning in late spring, with
cyclical variation ranging from 9.65 to 13.0 mg L−1 (Fig. 8c). Dur-
ing this period, pHT appeared strongly coupled to the early
spring variation in O2 concentration (Fig. 8c).

The apparent oxygen production at Jakolof Bay was consis-
tently greater than the solubility compensation point for a period
of 2 months from mid-June to mid-August, which is indicative
of a net autotrophic system (Fig. 9a). The low pHT values in early
September occurred below and above the O2 solubility compen-
sation. Calculation of apparent oxygen production at Bear Cove
was only possible until the salinity logger malfunctioned in mid-
May (Fig. 9b). O2 concentration was greater than O2 solubility
for nearly all of May, and likely representative of a net autotro-
phic system during this time. This was converse to Jakolof Bay as
O2 began to rise earlier at Bear Cove than Jakolof Bay (Fig. 9).
Estimated apparent oxygen production indicates that Bear Cove
remained net autotrophic for the month of June until concentra-
tions began to drop in July (Fig. 9c). Estimated apparent oxygen
production was deemed viable since the discrepancy of O2 satu-
ration differed by � 0.3 mg L−1 over a salinity of 28–32 (range
over all salinity data collected).

Correlations with pH variability
At Jakolof Bay pHT correlation coefficients were, overall,

low between pHT and factors tidal amplitude, O2 concentra-
tion, and temperature. The highest coefficients were observed
in June for O2 and temperature (Table S3). pHT had the
highest correlation with O2, however, in September when pHT

was most variable, this correlation was at its lowest. While
most correlation coefficients were significant, values were gen-
erally low and not robust.

For months May–August, correlation coefficients in Bear
Cove between pHT and O2 concentration were > 0.75:
September correlations were removed due to anomalous O2

data (Table S3). In September, pHT had the greatest correlation
with temperature at Bear Cove: R = 0.83. Both Jakolof Bay and
Bear Cove sites displayed low correlation with tidal amplitude.

The magnitude-squared coherence between tidal amplitude
and O2 concentration with pHT correlated well at Jakolof Bay
from May to July (Fig. 10a). The power spectral density peaks
during this time were consistent and occurred 1, 2 and
� 4 times d−1. The frequency of pHT variation increased in
August and September with new power spectral density peaks
occurring every 0.5 and 3 times d−1, approximately (Fig. 10a).
At these frequencies in August, the magnitude-squared
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coherence between O2 and pHT was ≥ 0.5 compared to tidal
amplitude and pHT, which was less than 0.3. The power spec-
tral density peaks at Jakolof Bay were most abundant in
September. The magnitude-squared coherence between tidal
amplitude and O2 with pHT were similar across most peaks in
September, with the exception of frequencies 1.91 and
2.88 d−1 where the O2 magnitude-squared coherence was at
least > 2.5× the magnitude-squared coherence between tidal
amplitude and pHT.

The magnitude-squared coherence between pHT and tidal
amplitude at Bear Cove was >0.5 at frequencies approximately
1 and 2 d−1 with exceptions occurring in June at � 1 d−1, and
in August at 2 d−1 (Fig. 10b). May and June had the greatest
number of power spectral density peaks outside the frequen-
cies of 1 and 2 d−1. These other frequencies (i.e., frequencies
other than 1 and 2 d−1) displayed a high magnitude-squared
coherence with O2 concentration and were abundant in May
and June (Fig. 10b). Overall, consistent frequency patterns in
pHT for July–September at Bear Cove were minimal.

Trends of carbonate chemistry estimates
Estimates of carbonate chemistry parameters PCO2 and Ωarg

follow expected trends with pHT values and reflect the
extreme variability of carbonate chemistry in the summer
months (Fig. S2). At Jakolof Bay a maximum Ωarg of 2.98 was
calculated in June, while a minimum Ωarg of 0.73 calculated in
September (Fig. S2b). PCO2 estimates ranged between
185 μatm in June to 1095 μatm in September. At Bear Cove,
PCO2 and Ωarg were likely more extreme than what was

recorded becasue maximum pHT was at the end of May and
estimations only extended to 18 May 2018 due to missing
salinity data (Fig. S2a). Despite a greater amount of uncer-
tainty with these estimates, which is a PCO2 of ± 16 and
23 μatm for Jakolof Bay and Bear Cove, respectively, and an
Ωarg of � 0.13, there is a fair amount of confidence that the
true values fall within the uncertainty bounds which display
rapid changes in both parameters (Fig. S2).

Discussion
Seasonal trends and extremes with high signal-to-noise

Presented here is the first account of year-long, high
temporal-resolution, pH time series collected in an Alaskan
estuary beginning in October of 2017. Jakolof Bay which is sit-
uated in the outer basin of Kachemak Bay experienced greater
pH and O2 variability—which occurred for longer durations—
than Bear Cove. Maximum pHT values were > 8.3 with a mini-
mum of 7.6 units at Jakolof Bay. For nearshore systems,
Kachemak Bay pH dynamics rank close to the most variable
sites on the U.S. west coast with respect to rates of hourly pH
change: observed to be as high as � 0.2 h−1 in Jakolof Bay
(Hofmann et al. 2011; Chan et al. 2017; Baumann and
Smith 2018). High rates of pH variability were present only
seasonally and concurrent with high rates of O2 production
indicative of a system whose carbonate chemistry is domi-
nated by biological processes. Recent studies have shown that
biological metabolism is a strong seasonal driver of pH
dynamics and is a factor that can lead to short-term extremes
of acidification and seawater corrosivity (Feely et al. 2018;
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Pacella et al. 2018; Lowe et al. 2019). We find that Kachemak
Bay is one such location where seasonal pH patterns are pre-
dominately driven by biological metabolic cycles. Therefore,
this study recommends methods aimed at elucidating accu-
racy and nuance to extreme short-term fluctuations in pH as
mediated by biology, by accounting for all constituents of
uncertainty and identification of the frequency at which
variability is observed.

Instilling a robust uncertainty protocol is essential to deter-
mine the accuracy of rapid changes in pH. For example, the
total uncertainty calculated for Jakolof Bay was 0.0184
(Table S2) which is < 10% of the greatest rate in hourly change
observed at this site. The low uncertainty provides the ability
to report small rapid changes in pH whereas high uncertainty
would not be able to accurately capture such fluctuations. The
importance of a signal-to-noise ratio has been highlighted
elsewhere as a method for detecting trends (Kapsenberg and
Hofmann 2016; Carter et al. 2019), and is reiterated here if
small rapid changes in pH are to be identified and reported.
With respect to detecting future trends in this system, the
importance of reducing sources of uncertainty will be impera-
tive for detecting emergent patterns of anthropogenic acidifi-
cation and incorporating this region into the GOA-ON
database. Currently, the degree of uncertainty around the
measurement of acidification parameters distinguishes a differ-
ence between datasets reporting “weather” or “climate” to be
0.02 and 0.003 pH units, respectively (Newton et al. 2015).
Both Jakolof Bay and Bear Cove have total uncertainty values
that are ± 0.002 pH units around the 0.02 threshold categoriz-
ing both locations with weather accuracy (Table S2). It is
important to note that the relative variability across months
and a proportion of pH variability within a 12 h period have
robust signal-to-noise ratios validating confidence in reported
measurements despite an uncertainty slightly > 0.02 for Bear
Cove. The uncertainty estimate for Bear Cove, however, was
lacking a reference sample which could have decreased or
increased the estimate. The most probable reason for the dis-
crepancy of the December Bear Cove bottle sample was likely
due to improper sample preservation as the TA measurements
also displayed a large anomaly (Table S1).

Modification of pH by photosynthesis and respiration
The unique oceanography of Kachemak Bay due in part to

its bifurcation make this region an important location to char-
acterize in the context of global ocean change. Both Jakolof
Bay and Bear Cove have strong spikes in pH that occur with
increased oxygen production and follow cyclical patterns. The
seasonal increases in pH were temporally dissimilar between
sites as pH maxima in Jakolof Bay and Bear Cove were in June
and May, respectively. The greatest 12 h period of total vari-
ability was also disparate between sites as Jakolof Bay experi-
enced greatest variability in September when this system
transitioned from net autotrophic to net heterotrophic. Con-
versely, Bear Cove experienced maximum variability in May

during the system’s transition from net heterotrophic to net
autotrophic. The balance between community respiration and
photosynthesis appears to be the driver of seasonal pH
extremes and variability at both sites and is further dependent
on the biota at each location. Primary production in Jakolof
Bay is driven by a mix of microalgae and macroalgae where
dense kelp beds of Saccharina latissima are extensive with
annual bloom and die-off cycles (Dames and Moore 1977).
Bear Cove lacks such macroalgae assemblages and productivity
is driven more by phytoplankton sources. This aspect of diver-
gent patterns of primary producers may correlate with two
observed seasonal patterns in pH variability, with the caveat
that kelp dominated systems increase pH dynamics in arctic
systems (Krause-Jensen et al. 2015). First, Bear Cove pH and
O2 began to increase earlier in the season than Jakolof Bay.
Macroalgae recruitment and growth is slower than phyto-
plankton as longer residence times in the inner basin likely
promote greater phytoplankton abundance over macroalgae
present in the outer basin (Field and Walker 2003; Wallace
and Gobler 2015). Second, Jakolof Bay experiences a stochastic
pH pattern in September relative to Bear Cove. Total variability
of pHT over a 12 h period reached a magnitude > 1 unit during
September in Jakolof Bay—this was nearly double that observed
in Bear Cove’s most variable pH month, which was May. This
pattern of pH decline and minima in the fall at Jakolof Bay
coincides with the die-off of large, fleshy, macroalgae beginning
in July. While O2 concentration is also variable during
September, lower concentrations would be expected due to
increased heterotrophy during macroalgae demise in order to
correlate with the low pH values; however, extremely low pHT

values were observed with moderate O2 concentrations in
September indicating a temporal mismatch between these two
parameters. To reiterate, the extreme fluctuations observed in
September are likely the transition of the system to net hetero-
trophic after an approximate 60 d period as being net autotro-
phic. It is suggested here that the increase in heterotrophy in
September is likely correlated to macroalgae demise; and the
moderate O2 levels during this time may be a shift back to
increases in phytoplankton abundance and photosynthesis
as macroalgae declines and surface irradiance coverage and
penetration increases with canopy loss (Miller et al. 2011).

The more extreme fluctuations in pH at Jakolof Bay are not
only due to the type of primary producer, but greater biomass
overall. The outer basin of Kachemak Bay is more coupled to
the greater Gulf of Alaska. These conditions facilitate nutrient
delivery and dispersal of fauna (Field and Walker 2003). From
May to September, correlations between pH and O2 concentra-
tion were weaker at Jakolof Bay compared to Bear Cove
(Table S3). This may also be explained by the geography of
this region as the inner basin has longer residence times and
lower biomass resulting in greater O2 mediated changes in pH,
rather than the continual fluctuation of high respiration and
photosynthetic cycles occurring in the background of more
robust mixing. Physical drivers of pH, however, did not appear
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to affect either location disproportionately relative to the bio-
logical signal. This can be seen as pH rises steadily with tem-
perature until O2 production and respiration create consistent
variability lasting until fall. Overall pH at either site did not
appear to respond to salinity fluctuations, and salinity dynam-
ics were low even at Bear Cove which historically receives more
freshwater input than Jakolof Bay (Trasky et al. 1977; Field and
Walker 2003). Given that Jakolof Bay predominately follows
physical oceanic trends similar to the Gulf of Alaska, which can
experience seasonal upwelling, there was no evidence of
upwelling in the temperature and salinity signature. Both sites
are shallow tidal estuaries with large inlets making any upwell-
ing signal extremely diffuse if existent at all, and this was veri-
fied by aligning pH with the upwelling index at 60�N and
149�W (https://www.pfeg.noaa.gov) (e.g., Fig. S3).

Understanding the frequency of pH variability
Drivers of pH variability whether physical or biological

(e.g., temperature and O2) are not mutually exclusive and act to
define the frequency at which pH variability occurs. Seasonal
shifts and diurnal pH variability in response to temperature
increases, biological metabolism, and riverine discharge have
been extensively addressed when providing context to experi-
mental design and the frequency of pH variability (Cornwall
et al. 2013; Joesoef et al. 2017; Van Dam and Wang 2019). The
frequency of carbonate chemistry variation, however, can occur
on much shorter time scales as described here, and can poten-
tially overlap with biological sensitivities to acidification which
have been shown to occur on the time scale of hours
(Waldbusser and Salisbury 2014; Waldbusser et al. 2015;
Kapsenberg et al. 2018). Observations here show that this hourly
scale in the frequency of variability during the months of May–
September displayed nearly consistent peaks at 1, 2, � 4 d−1,
likely associated with the semi-diurnal tidal signal. This trend is
unequivocal when looking specifically at the power spectral den-
sity analysis for tidal amplitude where three peaks are present
and believed to correspond to the mixed semi-diurnal tides
(Fig. S4). The expected fourth peak for the tide power spectral
density is absent as it would occur minutes past the 24 h period.
The importance of this phenomenon shows the degree to which
such large mixed semi-diurnal tidal exchanges can spike pH vari-
ability in either the positive or negative direction depending on
the flood water and the biologically modified source water
within the estuary. It would be expected that given the tidal
prism and biological metabolism occurring within the estuary,
that these two drivers potential nullify the other’s effect. The
interplay between biological metabolism and tidal amplitude
can be seen in the most variable months at Jakolof Bay and Bear
Cove which had multiple peaks in daily pH variability, likely
driven by nontidal signatures.

Correlations with pH variability in frequency domain
To help determine the frequency and drivers of pH variabil-

ity we applied a novel approach to correlate the power spectral

density of pH with O2 and tidal amplitude. Recent studies
have highlighted the importance of correlating physical and
biological conditions associated with nearshore pH variability,
and emphasize the need to incorporate these data when exam-
ining and reporting pH observations (Kapsenberg and Hof-
mann 2016). Thus far, correlations between carbonate
chemistry in the time domain with ancillary oceanographic
data have not provided the temporal resolution needed to
identify the frequency of semdiurnal and diurnal variability in
the Gulf of Alaska region (Evans et al. 2015; Reisdorph and
Mathis 2015; Siedlecki et al. 2017). Analyses in this study
show clear correlations between peak pH variability with tidal
amplitude and O2 over a diurnal scale which identifies specific
hourly frequencies of O2 or tidal driven pH variability. While
there is likely collinearity between pH and O2 with tidal
amplitude at specific frequencies (e.g., 1 and 2 d−1), there are
clear instances where the magnitude-squared coherence
between pH and oxygen is > 5× that of tidal amplitude, such
as in September at a frequency of � 3 d−1 in Jakolof Bay. This
signal suggests that biological metabolism is the driving source
of pH variability at 3 d−1, which could correspond to excessive
photosynthesis and respiration cycles following the photope-
riod of that month. Understanding these peak frequencies of
variability is imperative when trying to identify acute events
of unfavorable water chemistry as short windows of stressful
conditions have been shown to reduce growth and develop-
ment of sensitive larval bivalves (Waldbusser et al. 2015). For
example, bivalve out-planting projects may benefit from
knowing which months are most favorable with respect to
pH, and relying on a previous year’s times series may vary dra-
matically from year-to-year, but the frequency of pH variabil-
ity would likely remain more consistent, although with
differing levels of magnitude. Previous analyses have
highlighted the importance of identifying frequency changes
in carbonate chemistry, and the data here aim to address some
of these gaps in knowledge (Waldbusser and Salisbury 2014).
In addition, the frequency of pH variability driven by biologi-
cal metabolism could act in a synergistic or additive way to
large-scale anomalous events such as riverine discharge
(McCutcheon et al. 2019). Without properly incorporating
short-term frequency variability, conclusions drawn from
large-scale anomalies of pH and carbonate chemistry may be
inaccurate with respect to the resolution of rapid changes.

Correlation between tidal amplitude and pH were low over-
all when examined in the time domain (Table S3). Given the
amplitude of tides in Kachemak Bay, it was hypothesized that
pH would correlate well with tidal amplitude, however, this
was not the case. Close examination revealed that correlations
on the monthly scale where likely too coarse to identify robust
correlations. During the months of high pH variability (May–
September), any tidal signal was likely out-weighed by the
response of pH to O2. In other words, the disparity between
tidal and oxygen coherence in relation to pH is indicative of
O2 production dominating without tidal dilution or flushing.

Miller and Kelley pH variability in an Alaskan estuary

1488



Additionally, it appeared that pH variability was lower during
spring tides than neap tides for months May, June and
September in Jakolof Bay. However, statistical evaluation was
unclear as there was no consistency in a higher coefficient of
variation value of pH when splitting months by spring and
neap tidal cycles. It would be remiss to say that there is no
relationship between pH variability and tidal amplitude as one
was clearly identified in the frequency domain, but rather that
O2 was a dominant driver of pH on the monthly scale. Wind
speed is another potential factor that can affect the frequency
of pH variability by changing the rate of the sea-air CO2 flux
(Wanninkhof 2014; Xue et al. 2018; Pilcher et al. 2019). Cor-
relations were, therefore, examined between pH variability
and wind speed measured by the Kasitsna Bay National Estua-
rine Research Reserve station on Homer Spit (http://cdmo.
baruch.sc.edu/dges/) with results showing no observable pat-
tern or association. This likely indicates that these nearshore
water masses are well mixed as a result of the strong tidal
prisms in Kachemak Bay; or in the case of Bear Cove, wind
speed measurements on Homer Spit were not representative of
this enclosed, inner basin, bay.

Conclusion
The frequency patterns of pH variability presented here are

likely to increase in magnitude under future acidification sce-
narios where extreme values will become greater and the rates
of short-term change will increase (Gruber et al. 2012; Hauri
et al. 2013; Waldbusser and Salisbury 2014). Further, the
importance of correlating the frequency of pH variability with
the mechanisms inducing pH change is critical when identify-
ing potential sensitivities to acidification, resilience, and adap-
tive capacity. In the context of ecosystem function in a
changing ocean, the frequency of extreme pH conditions
observed here may act as an environmental history that
enhances adaptive capacity, referred to as OA refugia, or exac-
erbate acidification conditions pushing organisms already
found at the extremes of their physiological thresholds into
deleterious conditions (Waldbusser and Salisbury 2014;
Kapsenberg and Cyronak 2019). In order to enhance the spa-
tiotemporal assessment presented here, efforts are currently
being pursued to expand the current sensor network through-
out the great Kachemak Bay region, which will enhance the
understanding of ocean change in important subarctic marine
ecosystems.
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